

AxSYM® Active-B12 (holotranscobalamin)

Measures the bio-available form of vitamin B_{12}

An early marker of changes in B₁₂ status

Direct, automated method

Laboratory Diagnosis of Vitamin B₁₂ Deficiency

For the investigation of suspected vitamin B_{12} deficiency, measurement of serum vitamin B_{12} is the standard test. However, the test has the following limitations:

- It measures total, not metabolically active vitamin B₁₂
- The levels are not clearly correlated with clinical symptoms
- There is a large "grey-zone" or indeterminate range between normal and abnormal levels
- Clinically significant vitamin B₁₂ deficiency can occur with total vitamin B₁₂ levels in the apparently normal range

What is Active-B12 (holotranscobalamin)?

Not all vitamin B_{12} in serum is bio-available

Vitamin B_{12} (cobalamin) in serum is bound to two proteins, transcobalamin (TC) and haptocorrin (HC). The transcobalamin-cobalamin complex is called holotranscobalamin (HoloTC) or Active-B12.

The much larger fraction (about 80%) of cobalamin carried by HC is considered metabolically inert because no cellular receptors exist, except on the liver.

Active-B12 contains the biologically available cobalamin because only transcobalamin-bound B_{12} promotes the uptake of the cobalamin therein by all cells, via specific receptors.

The markedly shorter half-life for Active-B12 compared to HoloHC makes a decrease of Active-B12 one of the earliest markers of cobalamin deficiency.

Recently Proposed Algorithm for B₁₂ Deficiency Subjects

Clinical Studies with Active-B12 (holotranscobalamin)

Active-B12 results by vitamin B₁₂ concentration

Data provided by Prof. W Herrmann, Zentrallabor der Universitätskliniken des Saarlandes Homburg, Germany

B₁₂ cut-off 156 pmol/L Active-B12 cut-off = 35 pmol/l

Active-B12 and total B_{12} show good agreement at the extremes, i.e. very likely deficient or not deficient. There is an indeterminate zone between approximately 151–300 pmol/L total B_{12} where there is likely to be misclassification of B_{12} status if relying on total serum B_{12} alone.

Active-B12 may be useful in earlier identification of persons at risk of developing B₁₂ deficiency.

Methods based on specific anti-TC antibodies confirm the usefulness of Active-B12 for diagnosing B_{12} deficiency 2,3 . A number of studies have been published to support the contention that Active-B12 would be a better indicator of early vitamin B_{12} deficiency than total serum cobalamins 4,5,6 .

- Active-B12 levels are low in patients with biochemical signs of vitamin B₁₂ deficiency ⁷.
- Low values have been reported in both vegetarians 8,9, vegans 10, and in populations with a low intake of vitamin B₁₂ 11.
- A low serum Active-B12 (but not serum vitamin B₁₂) was reported in patients with Alzheimer's disease compared to a healthy control group ¹².
- Recent results also support that Active-B12 reflects vitamin B₁₂ status independent of recent absorption of the vitamin ¹³.

AxSYM Active-B12 (holotranscobalamin) Assay

Method Comparison AxSYM to Axis-Shield Active-B12 Radioimmunoassay

Sample range for RIA 7.1-144.3 pmol/L and 8.9-123.3 pmol/L for AxSYM

The AxSYM Active-B12 assay is based on two well characterised binders: A monoclonal antibody to Active-B12 (that does not recognize transcobalamin, TC) and a monoclonal antibody to TC.

The assay directly quantitates Active-B12 and avoids the sample pre-treatment step common to all vitamin B_{12} assays.

The new AxSYM Active-B12 assay correlates well to the existing RIA method.

AxSYM Active-B12 (holotranscobalamin) Assay Characteristics

Method	Microparticle Enzyme Immunoassay (MEIA)
Throughput	Up to 45 tests/hour
Sample Type	Serum (including gel tubes), lithium heparin plasma (including gel tubes)
Sample Preparation	None
Sample Volume	173 µl
Calibrators	6, recombinant Active-B12 in buffer, liquid, ready-to-use 0, 8, 16, 32, 64, 128 pmol/l
Controls	2, recombinant Active-B12 in serum, liquid, ready-to-use
Expected Values	19.1 - 119.3 pmol/l (apparently healthy population, n = 281)
Suggested Cut-off	35 pmol/l
Precision (total %CV)	<10%
Calibration Curve Stability	Typically 14 days
Limit of Detection	≤ 1 pmol/l
Reference Method	Axis-Shield radio-immunoassay

Ordering Information

Description	List Number
AxSYM HoloTC Reagent Kit	3L83-20
AxSYM HoloTC Calibrator Kit	3L83-01
AxSYM HoloTC Control Kit	3L83-10
AxSYM HoloTC Assay Disk	3L84-01 or higher

References

- Jørn Schneede, Prerequisites for establishing general recommendations for diagnosis and treatment of vitamin B₁₂ deficiency and cost-utility evaluation of these guidelines. Scand J Clin Lab Invest 2003;63:369-376.
- 2. Nexo E, Christensen A-L, Hvas A-M, Petersen TE, Fedosov SN. Quantification of holo-transcobalamin, a marker of vitamin B₁₂ deficiency. Clin Chem 2002;48:561-562.
- 3. Ulleland M, Eilertsen I, Quadros EV, Rothenberg SP, Fedosov SN, Sundrehagen E, Orning L. Direct assay for cobalamin bound to transcobalamin (Holotranscobalamin) in serum. Clin Chem 2002;48:526-532.
- 4. Lindgren A, Kilander A, Bagge E, Nexo E. Holotranscobalamin a sensitive marker of cobalamin malabsorption. Eur J Clin Invest 1999;29:321-329.
- 5. Tisman G, Vu T, Amin J, Luszko G, Brenner M, Ramos M et al. Measurement of red blood cell vitamin B₁₂: a study of the correlation between intracellular B₁₂ content and concentrations of plasma holotranscobalamin II. Am J Hematol 1993;43:226-229.
- 6. Herbert V, Fong W, Gulle V, Stopler T. Low holotranscobalamin II is the earliest serum marker for subnormal vitamin B₁₂ (cobalamin) absorption in patients with AIDS. Am J Hematol 1990;34:132-139.
- 7. Obeid R et al. Cobalamin status (holo-transcobalamin, methylmalonic acid) and folate as determinants of homocysteine concentration. Clin Chem 2002;48:2064-2065.
- 8. Herrmann W et al. Functional vitamin B₁₂ deficiency and determination of holotranscobalamin in populations at risk. Clin Chem Lab Med 2003;41:1478-1488.
- 9. Herrmann W et al. Vitamin B₁₂ status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr 2003;78:131-167.
- 10. Lloyd-Wright Z et al. Holotranscobalamin as an indicator of dietary vitamin B₁₂ deficiency. Clin Chem 2003;49:2076-2078.
- 11. Refsum H et al. Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am J Clin Nutr 2001;74:233-241.
- 12. Refsum H, Smith AD. Low vitamin B₁₂ status in confirmed Alzheimer's disease as revealed by serum holotranscobalamin. J Neurol Neurosurg Psychiatry 2003;74:959-961.
- 13. Chen X et al. Influence of cobalamin deficiency compared with that of cobalamin absorption on serum holotranscobalamin II. Am J Clin Nutr 2005;81:110-114.

Abbott GmbH & Co. KG
Abbott Diagnostics Europe
Max-Planck-Ring 2
65205 Wiesbaden
Germany
Tel. (+49) 6122580
Fax (+49) 6122581244
www.abbottdiagnostics.com

Axis-Shield plc
The Technology Park
Dundee DD2 1XA
UK
Tel. (+44) 1382 422 000
Fax (+44) 1382 422 088
www.axis-shield.com

